learn Using virtual reality to help teenagers with autism learn how to drive video

00:02:53
  • 0
  • 0
  • 0
  • 0

Category of the video: Video lessons

Using virtual reality to help teenagers with autism learn how to drive.

Surveys indicate that about 30 percent of adolescents with ASD either drive or want to drive. That is why Weitlauf, who is an assistant professor of pediatrics at Vanderbilt University Medical Center and part of the Vanderbilt University Kennedy Center, is collaborating with a team of Vanderbilt engineers to develop a special adaptive virtual-reality driving environment for individuals with ASD. Although there is no single accepted treatment for ASD, there is growing agreement that individualized behavioral and educational interventions can have a positive impact on the lives of these individuals and their families, she explained.

There are a number of off-the-shelf driving simulators available, but none have the capabilities built into the Vanderbilt VR Adaptive Driving Intervention Architecture (VADIA). Not only is it specifically designed to teach adolescents with ASD the basic rules of the road, but VADIA also gathers information about the unique ways that they react to driving situations. This will allow the system to alter driving scenarios with varying degrees of difficulty to provide users with the training they need while keeping them engaged in the process. Ultimately, it may also help screen individuals whose deficits are too severe to drive safely.

The research setup consists of an automotive-style bucket seat, steering wheel, brake and gas pedals in front of a large, flat screen display on a height-adjustable table. The black box sitting directly below the screen is an eye-tracker that keeps track of where the driver is looking.

Participants don a headset containing electrodes that read the electrical activity of their brain (EEG) and they are hooked up to an array of physiological sensors that record the electrical activity of the driver’s muscles (EMG), electrical activity of the heart (ECG), galvanic skin response, blood pressure, skin temperature and respiration. The elaborate monitoring allows the researchers to determine if the driver is engaged or bored by the simulation.

The simulator portrays a city with four different districts – downtown, residential, industrial and arboreal – that is ringed by a freeway. It is programmed with four basic types of driving scenarios: turning, merging, speed and laws. Speed scenarios involve those that require the driver to change their speed, such as entering or leaving school zones, street maintenance areas and changes in posted speed limit. Laws scenarios involve obeying traffic signs, such as stop and yield.

The software includes a number of factors that can be changed to increase or decrease the degree of difficulty involved. It can vary the speed and aggressiveness of the autonomous vehicles the driver encounters. It can vary weather conditions from sunny, overcast and rainy. It can also alter the responsiveness of the brake pedal, gas pedal and steering wheel to mimic the effect of slippery or dry pavement.

The system is designed to give drivers immediate feedback when they make mistakes. In its basic, performance mode, the simulator reacts when the driver makes a performance error such as exceeding the speed limit or failing to stop at a red light. The simulation stops and a text message is displayed on the screen and repeated audibly that explains the mistake and corrective steps the driver can take to avoid it.

In its second mode, the simulator not only reacts to performance errors, but it also reacts when the driver fails to pay attention to important elements in the scene, such as stop signs, other vehicles and pedestrians. These objects are marked in the computer and if the eye tracker determines that the driver has not looked at such an object for a period the researchers have determined as adequate, the simulation stops and issues an explanatory error message.

This would definitely be a good teaching aide for driving, without a doubt,” confirmed 16-year old Brandon Roberson, an adolescent with Asperger syndrome who has been participating in the studies. He has his learner’s permit and would like to drive by himself. “Going out and doing what I want to do is something I have never been able to do because I have not been able to drive.”

To learn more about this research, click here: http://news.vanderbilt.edu/2016/07/using-virtual-reality-to-help-teenagers-with-autism-learn-how-to-drive/

Follow Vanderbilt on Twitter: https://twitter.com/vanderbiltu, on Instagram: http://instagram.com/vanderbiltu and on Facebook: https://www.facebook.com/vanderbilt.

See all Vanderbilt social media at http://social.vanderbilt.edu.
Comments (0)
Similar video / Authors videos